Nanotechnology and microbiology: basic science and applications that can impact cell biology

Roberto Rebeil
1st Annual Symposium Integrating Nanotechnology With Cell Biology and Neuroscience
08/15/07
Focus of research is on host-pathogen interactions to understand and combat disease.
Illnesses spread by insects represent a significant portion of emergent and reemergent diseases

Plague (Drug resistance)
Tularemia
Lyme disease
Relapsing fever
Typhus
West Nile virus
Rocky Mountain Spotted Fever
Dengue
Yellow fever
Malaria (Drug resistant)

Temporal-geographical spread of WNV in the US through mosquitoes
Y. pestis is a bacterial pathogen of significant historical and current interest

- Justinian Plague (541-544)
- Black Death (1347-1351)
- Oriental Plague (1855-1900)

- Multiple recent smaller epidemics
- Classified as a reemergent pathogen
- Classified as a biowarfare/bioterrorism agent
Y. pestis is maintained in nature by flea-rodent enzootic cycles.

Diagram:
- **Sylvatic Cycle**
 - Wild Rodent → Infective Flea → Contaminated Soil → Wild Rodent
 - Winter Dormancy
 - Hibernation

- **Bubonic Plague**
 - Direct Contact: Wild Rodent → Infective Flea → Human
 - Lethality: 40-60%

- **Pneumonic Plague**
 - Person to Person
 - Secondary Plague Pneumonia
 - Lethality: 99%

- **Urban Cycle**
 - Direct Contact: Infective Flea → Domestic Rodent

Pathways Table:
- Usual
- Occasional
- Rare or theoretical
Both the virulence and geographical distribution of *Y. pestis* are linked to the flea vector.

- **Bloodstream:** bacteria/ml?
 - ID$_{50} = 1 \times 10^8$ bacteria/ml

- **Various organ systems:** liver, spleen, lung

- **Temperatures:**
 - 21 °C
 - 37 °C
Y. pestis virulence factors: anti-phagocytic and anti-inflammatory

F1 pseudocapsule

V-antigen

Cornelis et al., 2002
Atomic force microscopy can help to visualize bacterial nanostructures

Yersinia pestis 21 ºC

Yersinia pestis 37 ºC

Jonas et al. (2007)
Novel microscopy techniques like HSI-MVCR help to visualize true host-pathogen interactions

E. coli pAsRed2

Y. pestis pAsRed2
Y. pestis pathogenesis is dependent on both modified lipid A and YOPS

Rebeil et al., 2004
TIRF microscopy permits the study of receptor-ligand interactions on the cell surface at the nanoscale level

= fluorescently labeled LPS

RAW 264.7 mouse macrophage
Y. pestis transmission by fleas is by a unique mechanism.
Novel application of X-ray photoelectron spectroscopy (XPS)

<table>
<thead>
<tr>
<th>Element</th>
<th>At. %</th>
<th>Mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Si</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

K.E. = hν - E_L

X-ray photons

Vacuum

X-ray Photoelectrons

1s

2s

2p

3s

3p

4d

Element 1s 2p 2s O 1s N 1s Si 2p P 2s Fe 2p Na 1s Si 2p O 2s C 1s P 2s Si 2s Fe 2p N Auger Na 1s O Auger
XPS shows that significant changes occur to the flea-bloodmeal after digestion.
Time of Flight- Secondary Ion Beam spectroscopy will provide additional information
Free Iron plays a crucial role in *Y. pestis* gene regulation: XPS can help determine the state of iron in the flea.

<table>
<thead>
<tr>
<th>Element</th>
<th>At. %</th>
<th>Mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>73</td>
<td>66</td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Si</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>
XPS analysis reveals different Iron species in *Y. pestis* clumps depending on growth conditions.
Applications to cell biology and pathogenesis: host-pathogen, cell-cell, neuron-synapse.

Note: Great technology requires great biology
Aknowledgements

My Lab
• Bryan Carson
• Kevin Crown
• Bryce Ricken

Rocky Mountain Labs
• Joe Hinnebusch
• Clayton Jarret

Sandians
• Allan Burns
• Jeri Timlin
• Tony Ohlhausen
• Bill Wallace
• Luke Brewer
• David Haaland
• Howland Jones
• Mike Sinclair